Showing posts with label Conversational AI. Show all posts
Showing posts with label Conversational AI. Show all posts

Wednesday, 20 November 2024

Building BloomBot: A Comprehensive Guide to Creating an AI-Powered Pregnancy Companion Using Gemini API

Solution approach for BloomBot

1. Problem Definition and Goals

Objective:

  • Develop BloomBot, an AI-powered chatbot tailored for expecting mothers to provide:
    • Pregnancy tips
    • Nutrition advice by week
    • Emotional support resources
    • A conversational interface for queries

Key Requirements:

  • AI-Powered Chat: Leverage Gemini for generative responses.
  • User Interface: Interactive and user-friendly chatbot interface.
  • Customization: Adapt responses based on pregnancy stages.
  • Scalability: Handle concurrent user interactions efficiently.

2. Architecture Overview

Key Components:

  1. Frontend:

    • Tool: Tkinter for desktop GUI.
    • Features: Buttons, dropdowns, text areas for interaction.
  2. Backend:

    • Role: Acts as a bridge between the frontend and Gemini API.
    • Tech Stack: Python with google.generativeai for Gemini API integration.
  3. Gemini API:

    • Purpose: Generate responses for user inputs.
    • Capabilities Used: Content generation, chat handling.
  4. Environment Configuration:

    • Secure API key storage using .env file and dotenv.

3. Solution Workflow

Frontend Interaction:

  • Users interact with BloomBot via a Tkinter-based GUI:
    • Buttons for specific tasks (e.g., pregnancy tips, nutrition advice).
    • A dropdown for selecting pregnancy weeks.
    • A text area for displaying bot responses.

Backend Processing:

  1. Task-Specific Prompts:
    • Predefined prompts for tasks like fetching pregnancy tips or emotional support.
    • Dynamic prompts (e.g., week-specific nutrition advice).
  2. Free-Form Queries:
    • Use the chat feature of Gemini to handle user inputs dynamically.
  3. Response Handling:
    • Parse and return Gemini's response to the frontend.

Gemini API Integration:

  • Models Used: gemini-1.5-flash.
  • API methods like generate_content for static prompts and start_chat for conversational queries.

4. Implementation Details

Backend Implementation

Key Features:

  1. Pregnancy Tip Generator:
    • Prompt: "Give me a helpful tip for expecting mothers."
    • Method: generate_content.
  2. Week-Specific Nutrition Advice:
    • Dynamic prompt: "Provide nutrition advice for week {week} of pregnancy."
    • Method: generate_content.
  3. Emotional Support Resources:
    • Prompt: "What resources are available for emotional support for expecting mothers?"
    • Method: generate_content.
  4. Chat Handler:
    • Start a conversation: start_chat.
    • Handle free-form queries.

Code Snippet:


class ExpectingMotherBotBackend: def __init__(self, api_key): self.api_key = api_key genai.configure(api_key=self.api_key) self.model = genai.GenerativeModel("models/gemini-1.5-flash") def get_pregnancy_tip(self): prompt = "Give me a helpful tip for expecting mothers." result = self.model.generate_content(prompt) return result.text if result.text else "Sorry, I couldn't fetch a tip right now." def get_nutrition_advice(self, week): prompt = f"Provide nutrition advice for week {week} of pregnancy." result = self.model.generate_content(prompt) return result.text if result.text else "I couldn't fetch nutrition advice at the moment." def get_emotional_support(self): prompt = "What resources are available for emotional support for expecting mothers?" result = self.model.generate_content(prompt) return result.text if result.text else "I'm having trouble fetching emotional support resources." def chat_with_bot(self, user_input): chat = self.model.start_chat() response = chat.send_message(user_input) return response.text if response.text else "I'm here to help, but I didn't understand your query."

Frontend Implementation

Key Features:

  1. Buttons and Inputs:
    • Fetch pregnancy tips, nutrition advice, or emotional support.
  2. Text Area:
    • Display bot responses with a scrollable interface.
  3. Dropdown:
    • Select pregnancy week for tailored nutrition advice.

Code Snippet:


class ExpectingMotherBotFrontend: def __init__(self, backend): self.backend = backend self.window = tk.Tk() self.window.title("BloomBot: Pregnancy Companion") self.window.geometry("500x650") self.create_widgets() def create_widgets(self): title_label = tk.Label(self.window, text="BloomBot: Your Pregnancy Companion") title_label.pack() # Buttons for functionalities tip_button = tk.Button(self.window, text="Get Daily Pregnancy Tip", command=self.show_pregnancy_tip) tip_button.pack() self.week_dropdown = ttk.Combobox(self.window, values=[str(i) for i in range(1, 51)], state="readonly") self.week_dropdown.pack() nutrition_button = tk.Button(self.window, text="Get Nutrition Advice", command=self.show_nutrition_advice) nutrition_button.pack() support_button = tk.Button(self.window, text="Emotional Support", command=self.show_emotional_support) support_button.pack() self.response_text = tk.Text(self.window) self.response_text.pack() def show_pregnancy_tip(self): tip = self.backend.get_pregnancy_tip() self.display_response(tip) def show_nutrition_advice(self): week = self.week_dropdown.get() advice = self.backend.get_nutrition_advice(int(week)) self.display_response(advice) def show_emotional_support(self): support = self.backend.get_emotional_support() self.display_response(support) def display_response(self, response): self.response_text.delete(1.0, tk.END) self.response_text.insert(tk.END, response)

5. Deployment

Steps:

  1. Environment Setup:
    • Install required packages: pip install tkinter requests google-generativeai python-dotenv.
    • Set up .env with the Gemini API key.
  2. Testing:
    • Ensure prompt-response functionality works as expected.
    • Test UI interactions and Gemini API responses.

6. Monitoring and Maintenance

  • Usage Analytics: Track interactions for feature improvements.
  • Error Handling: Implement better fallback mechanisms for API failures.
  • Feedback Loop: Regularly update prompts based on user feedback.